Vision Based Object Detection and Navigation for Spacecraft

Completed Technology Project (2015 - 2019)

Project Introduction

An autonomous relative navigation system based on a combination of low cost infrared and vision sensors will be created. Such a system has the potential to be relatively small size, low cost, and capable of autonomous operation over a wide range from a few meters up to several kilometers, even on uncooperative objects such as dead satellites and space debris. This proposal uses recently developed COTS sensor hardware and robust algorithms to perform measurement modeling and simulation, relative navigation, object identification and state estimation that I will develop and code in software. I will combine new methods of image processing, object identification, tracking, and state estimation into an overall system that is robust to varied optical (lighting, focus) and range conditions. The system performance will be tested using high-fidelity simulated images. These software tools will then become part of the NASA AR&D Warehouse, and can be used for a wide range of proximity operations applications in future spacecraft missions.

Anticipated Benefits

An autonomous relative navigation system based on a combination of low cost infrared and vision sensors has the potential to be relatively small size, low cost, and capable of autonomous operation over a wide range from a few meters up to several kilometers, even on uncooperative objects such as dead satellites and space debris.

Primary U.S. Work Locations and Key Partners

Vision Based Object Detection and Navigation for Spacecraft

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Space Technology Research Grants

Vision Based Object Detection and Navigation for Spacecraft

Completed Technology Project (2015 - 2019)

Organizations Performing Work	Role	Туре	Location
Georgia Institute of Technology-Main Campus(GA Tech)	Lead Organization	Academia	Atlanta, Georgia

Primary U.S. Work Locations	
Georgia	

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Georgia Institute of Technology-Main Campus (GA Tech)

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

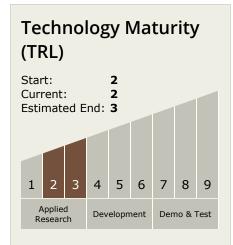
Hung D Nguyen

Principal Investigator:

Glenn Lightsey

Co-Investigator:

Christopher R Mcbryde



Space Technology Research Grants

Vision Based Object Detection and Navigation for Spacecraft

Completed Technology Project (2015 - 2019)

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - - □ TX17.2.5 Rendezvous, Proximity Operations, and Capture Sensor Processing and Processors

Target Destinations

Earth, The Moon, Others Inside the Solar System

